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ABSTRACT

Most synthetic aperture radar (SAR) automatic target recog-
nition (ATR) methods are developed for the closed-set en-
vironment, so these ATR methods can only identify known
classes in the target library. However, it is known that the
real scenario is open, so it requires the ATR model should
be capable of identifying unknown categories while classi-
fying known categories. Therefore, this paper proposes a
pseudo-unknown class guided-based open-set learning net-
work for SAR ATR tasks. First, to enhance the separabil-
ity between known categories, a separable feature embedding
space based on von Mises-Fisher (vMF) distribution is es-
tablished. Second, unknown class decision boundaries are
constructed based on pseudo-unknown classes synthesized by
known categories, and are expanded based on the idea of con-
trastive learning, which is very helpful in promoting the abil-
ity of the model to identify unknown categories. Experiments
on moving and stationary target acquisition and recognition
(MSTAR) dataset demonstrate the effectiveness of the pro-
posed method.

Index Terms— Synthetic aperture radar, automatic target
recognition, open-set learning, contrastive learning

1. INTRODUCTION

As an active microwave detection device, synthetic aperture
radar (SAR) has been widely used in remote sensing, envi-
ronment surveillance, and military applications because of its
ability to all-weather and all-day imaging. Automatic target
recognition (ATR) is one of the major means to obtain valu-
able information from SAR imagery, so ATR has always been
a crucial topic in the field of SAR image interpretation.

With the rapid development of deep learning in an end-
to-end learning manner, numerous deep learning-based SAR
ATR methods have been proposed in recent years. For in-
stance, Chen et al. [1] designed an all-convolutional classifi-
cation network to achieve SAR ATR for the first time. Ren et
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al. [2] proposed a multi-scale convolutional capsule network
to realize SAR target recognition under various complex sce-
narios. Zhou et al. [3] integrated attributed scattering center
and deep convolutional neural networks to address the prob-
lem of the adversarial attack in SAR ATR tasks.

Currently, most existing deep learning-based SAR ATR
systems are designed for the closed-set environment, which
faces a significant challenge when encountering novel tar-
gets in real-world scenarios. To effectively identify unknown
targets while classifying known targets, open-set recognition
(OSR) [4] has received great attention over the past few years.
In [5], the maximum logit score (MLS) is employed to de-
sign the open-set classifier. Ma et al. [6] developed a mul-
titask learning network based on generative adversarial net-
work (GAN) for open-set SAR target recognition. Giusti et
al. [7] introduced the OpenMax classifier to achieve open-set
SAR target recognition.

Although some preliminary achievements have been
achieved in open-set SAR target recognition recently, there
are still many issues to be addressed. In particular, the sen-
sitivity characteristic of SAR images to radar view variation
results in intra-class divergences being greater than inter-
class divergences, which brings great challenges to unknown
category identification and known category classification. In
this paper, we propose a pseudo-unknown class guided-based
open-set learning network for SAR ATR tasks. Specifically,
to improve the separability between known categories, we
construct a separable feature embedding space based on von
Mises-Fisher (vMF) distribution. Moreover, inspired by
the advantage of contrast learning, we establish and expand
the unknown class decision boundaries by using pseudo-
unknown classes synthesized by known classes, aiming to
boost the ability of the ATR to identify unknown classes.

2. METHODOLOGY

In this section, the proposed open-set SAR ATR method is
elaborated. The overall framework consists of two parts: sep-
arable feature embedding space modeling and open-set recog-
nition, as shown in Fig. 1.
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Fig. 1. Overall framework of the proposed method.

2.1. Separable feature embedding modeling

Since SAR images are sensitive to radar sensor view, the di-
vergences within classes are greater than the divergences be-
tween classes. As a consequence, in order to extract separable
and discriminative SAR features for robust open-set recogni-
tion, we model a separable feature embedding space based on
von Mises-Fisher (vMF) distribution [8], which is defined on
the unit sphere in n-dimension space. The probability density
function of vMF distribution is written as follows:

pd (z;µc, κ) = Zd(κ) exp
(
κµ⊤

c z
)

(1)

where z represents the normalized feature embedding after
the feature extraction network, i.e., ∥z∥2 = 1, µc represents
the prototype of c-th class, and κ ≥ 0 describes the concentra-
tion of the distribution around the class prototype µc. Zd(κ)
is the normalization factor, which is defined as:

Zd(κ) =
κn/2−1

(2π)n/2In/2−1(κ)
(2)

where Iv(κ) denotes the modified Bessel function of the first
kind at order v.

According to [8], angular distance can better measure the
similarity between high-dimensional features compared to
Euclidean metric, thus enhancing the separability of known
classes. To this end, we design a hypersphere classification
loss based on cosine similarity to encourage the embedding
to be tightly distributed around its class prototype, which is
expressed as:

Lcls = − 1

N

N∑
i=1

yi log

(
eκµ

⊤
yi

zi∑K
k=1 e

κµ⊤
k zi

)
(3)

where N denotes the size of the known samples.

2.2. Unknown decision boundary expansion

In order to effectively identify unknown classes, we first in-
troduce the idea of manifold mixup to synthesize pseudo-
unknown classes through known classes, and then expand
the boundaries of unknown classes based on supervised con-
trastive learning. As one can see from Fig. 1, targets from ex-
isting known classes can be modeled to be several subspheres
in the hypersphere space. Thus, we argue that each subsphere
is compacted in separable feature embedding space, which is
beneficial to identifying known classes and unknown classes.

In view of the fact that the similarity of SAR images from
the different targets can be higher than that of SAR images
from the same target. For this reason, we first introduce the
idea of manifold mixup [9] to synthesize pseudo-unknown
classes using known classes, and then compact the known
classes based on contrastive learning, so as to expand the de-
cision boundary of unknown class, as depicted in Fig. 2.
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Fig. 2. Illustration of manifold mixup of pseudo-unknown
embeddings.

Let (zi, yi) and (zj , yj) are two random embedding-target
pairs from different classes (yi ̸= yj), the manifold mixup
process of pseudo-unknown embedding (z̃, ỹ) is as follows:

z̃ = λzi + (1− λ)zj
ỹ = λyi + (1− λ)yj

(4)

where λ ∈ [0, 1] represents the mixing factor sampled from
Beta(α, α) distribution.



Then, we leverage the idea of supervised contrastive
learning [10] to obtain an embedding space with intra-class
compactness. In simple terms, an intra-class aggregation loss
is defined as follows:

Litra = −
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈I\{i} exp (zi · za/τ)

(5)
where I is the total number of the training samples, P (i) is
the set of positive samples sharing the same label as zi, and τ
is a scaling parameter.

The total loss of the proposed method is composed of hy-
persphere classification loss and intra-class aggregation loss,
which can be written as:

Ltotal = Lcls + γLitra (6)

where γ is the loss weight parameter to balance the two terms.

2.3. Target identity inference

In the reference stage, we determine the identity of a test sam-
ple x based on the similarity score, which is defined as the
maximum cosine distance between the embedding and class
prototypes of known classes:

sim = max
c∈(1,...,K)

cosine (z, µc) (7)

where z is the learned embedding of the test sample x.

3. EXPERIMENTAL RESULTS

In this section, we present several experiments on the moving
and stationary target acquisition and recognition (MSTAR)
[11] dataset to validate the effectiveness of the proposed
method. The MSTAR dataset is established by the U.S. De-
fense Advanced Research Projects Agency (DARPA), which
contains 10 classes of military ground targets. Following
previous studies [2, 6], images with 17◦ depression are se-
lected for training, and those with 15◦ depression are used for
testing. All SAR images are used with 128×128 pixels.

To evaluate the performance under the open-set environ-
ment, we select 7 types of SAR targets as known targets for
training, including 2S1, BRDM2, BTR60, D7, T62, ZIL131,
and ZSU23/4, and a total of 2425 images from all the 10 types
of targets are used to test the ATR model. Stochastic gradi-
ent descent (SGD) optimizer is used to optimize the proposed
method. The learning rate is set to 0.001, and γ is set to 0.5.

3.1. OSR performance evalution

To demonstrate the superiority of the proposed method, three
advanced open-set SAR target recognition methods, includ-
ing MLS[5], Mutitask Learning[6], and OpenMax[7] are em-
ployed as competitors in this paper.

Table 1. Recognition performance of each method.

Method AUROC F1 OA* OA

MLS[5] 86.30 0.8754 86.29 87.51

Mutitask Learning[6] 92.97 0.8823 84.14 86.35

OpenMax[7] 86.80 0.7429 68.28 69.60

Ours 96.35 0.9450 94.02 93.73

(a) (b)

Fig. 3. Recognition performance with various openness.
(a) F1-score, (b) Open-set Accuracy.

Four evaluation metrics, i.e., area under ROC curve (AU-
ROC), F1-score (F1), closed-set accuracy (OA*), and open-
set accuracy (OA), are leveraged to comprehensively evaluate
the proposed method. Among them, AUROC, F1 and OA are
widely employed for OSR algorithm assessment, and OA*
can reflect the classification performance of known classes
under open-world scenarios. From the experimental results in
Table 1, one can see that our proposed method is superior to
state-of-the-art open-set SAR ATR methods.

Moreover, a desirable open-set target recognition model
should perform robustly regardless of the ratios of known and
unknown classes. Thus, openness [4] is defined to describe
how open the environment is:

openness = 1−

√
2× |CTR|

|CTR|+ |CTE |
(8)

where CTR and CTE represent the number of training and
testing classes, respectively.

In the following experiments, we compare the perfor-
mance of different methods under various openness. Specif-
ically, the number of known classes decreases from 7 to 3
with a step of 1, and the corresponding openness increases
from 9.25% to 32.06% according to Eq. (8). Due to the
space constraints, only F1-score and open-set accuracy are
presented in Fig. 3. One can see that the OSR performance
of the proposed method still outperforms all competitors un-
der different open environments. These experimental results
validate the robustness of our proposed method.



3.2. Ablation studies

To assess the effectiveness of key components of the proposed
method, we conduct ablation studies on MSTAR dataset. For
simplicity, the model with the separable feature embedding
modeling, or an unknown decision boundary expansion are
dubbed SFEM and UDBE, respectively. As shown in Table 2,
each key component contributes to the known class classifica-
tion and unknown class identification in the proposed method.

Table 2. Results of ablation experiments.

SFEM UDBE AUROC F1 OA* OA

! ✗ 94.76 0.9157 92.39 92.58

✗ ! 90.98 0.8967 89.30 87.71

! ! 96.35 0.9450 94.02 93.73

3.3. Visualization of hyperspherical embedding space

To intuitively observe the proposed separable feature embed-
ding space, we use t-SNE to visualize the learned feature
space. The experimental results are presented in Fig. 4. It
can be observed that different known classes are well sepa-
rated from each other as well as from the unknown class.

Fig. 4. Visualization of separable embedding space.

4. CONCLUSION

To achieve robust open-set SAR target recognition, this pa-
per proposes a pseudo-unknown class guided-based open-set
learning network. The contribution of this paper includes
two aspects. On the one hand, a separable feature embed-
ding space is modeled to enhance the discrimination between
known and unknown classes. On the other hand, an unknown
decision boundary expansion strategy is developed to improve
the open-set recognition performance. Several experiments
on MSTAR show that the proposed method outperforms some
advanced open-set SAR ATR methods.
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